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Some covariant representations of massless boson fields 
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8 Bedford College, Regent's Park, London NW1 4NS 

Received 12 January 1981 

Abstract. Consider the c*-algebra of the canonical commutation relations (CCR), acted on 
by a group G of one-particle symmetry transformations V. A symplectic operator T defines 
a representation rT = rF 0 T where rF is the Fock representation. The automorphisms of 
the CCR algebra that are induced by G are shown to be continuously implemented in rT if 
and only if A-V(g)AV*(g)  is a continuous Hilbert-Schmidt 1-cocycle of G; here, A is 
related to T by T = exp A ,  A being a suitable bounded, anti-linear self adjoint operator. 

Some new examples of fully Poincark-covariant representations of massless fields in 
1 + 1 dimensions are constructed. 

Introduction 

This paper continues in the spirit of previous works (Streater and Wilde 1970, Streater 
1971, Roepstorff 1970, Bonnard and Streater 1975, 1976, Basarab-Horwath et a1 
1979, Kraus et a1 1977a, b, Kraus and Streater 1981), concerned with finding 
representations of the free quantised field that are covariant under some group, have 
positive energy and which are inequivalent to the Fock representation. Such represen- 
tations are interesting in the description of states with an infrared problem (Kraus et a1 
1977a, Reents 1977) and in some exactly soluble models (Streater 1974a, b). 

There are several interesting c *-  algebras associated with the free boson field, for 
example the local algebra of Haag and Kastler (1964), and the minimal algebra of 
Manuceau (1968) and Slawny (1972). For definiteness, we use the original algebra 
defined by Segal (1959) for which the results of Shale (1962) apply. In this section we 
summarise the concepts we shall need. In § 2 we derive two results that are new, and in 
§ 3 we give the detailed construction of the new covariant representations of the free 
boson field in 1 + 1 dimensions. 

Let %' be a complex Hilbert space. The CCR algebra d over %' is the set of finite 
formal sums (over @) of elements of 2: thus I;; cri[hi] E d,  ai E C, where [ h i ]  is a formal 
element of 2. The multiplication law is determined by 

(1) [ h J h 2 1  = exp& Im(hl, h2))[hl+ h21, 

A representation of the CCR algebra is a pair ( W, YC) where YC is a complex Hilbert space 
and W is a map W : %'+Aut 3% (the set of unitaries on YC) obeying 

~ ( h )  ~ ( h ' )  = exp (ti Im(h, h'))  ~ ( h  + h ' )  (2) 
and such that, for each finite-dimensional subspace X 0  E X, the map W : h + W ( h )  is 
strongly continuous as a map %',, + Aut YC. The Stone-von Neumann theorem asserts 
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2480 L Polley, G Reents and R F Streater 

that all irreducible representations of the CCR over A, where dim A <a, are 
equivalent. As a result, the two W*-algebras %I(&), %z(A) generated by two 
representations Wl, W2 of the CCR over A, are algebraically isomorphic under the map 
which sends Wl(h) to Wz(h). Thus, the set of W*-algebras {%(A)} as A runs over the 
finite-dimensional subspaces of X, forms an inductive system. The inductive limit is the 
c*-algebra %(X) of Segal (1959). 

A real-linear operator T on X (ie., aT = Ta for real a )  is called symplectic if 

W T f ,  Tg) = ImV, g )  (3) 

for all f, g E X. We shall consider the set of bounded invertible symplectic operators; 
these form a group. A unitary operator is clearly symplectic. 

A symplectic operator T defines an automorphism UT of a(%) namely, the unique 
automorphism such that vT( W(h)) = W(Th) .  Then a group {a,: a E G} of automor- 
phisms is obtained from a group {To : a E G} of symplectics; in particular for the free 
relativistic quantised field, X carries a representation { V ( L ) ;  L = (a, A) E PI} of the 
Poincart5 group, leading to the automorphism group {aL : L E PI}. 

A quasi-free state w is determined by 

(4) w ( ~ ( h ) )  = Im(aY,h)  e-:(h,Bh' 

for some operator B on R a n d  some a" E X x ,  the algebraic dual to X. The case B = 1, 
Ox # 0 has been treated before (Basarab-Horwath er a1 1979); the case B = 1, ax = 0 is 
the Fock vacuum state, wF. Shale (1962) considers the class of states w with ax = 0 that 
are determined by a symplectic operator T with 

w (  W(h)) = wF(w(Th)) ( 5 )  

We write U F O  T or WT for w in this case. The corresponding representation will be 
written T T :  

TT(W(f))= wF(Tf). ( 6 )  
Let US say TI  - TZ if ITT, and T T ~  are equivalent. It is known that ITF and TT are 
equivalent if and only if (Shale 1962): 

(7) 
is a Hilbert-Schmidt operator on X regarded as a real vector space and i is the adjoint 
relative to Re( ,  ). Our first task is to obtain a more convenient 'linear' condition 
equivalent to (7). 

1 - IT1 = 1 -(TtT)1'2 

2. A linear implementability condition 

A real-linear map T on X can be uniquely expressed as 

T =  T++T- 

where T+ is @-linear and T- is anti-linear. Then T is symplectic iff 
T - ' = T ? - T *  

where the adjoint of T- is defined by 

V, T-g) = (T", g ) .  
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Let T+ = UIT+/ be the polar decomposition of T,. Since the automorphism rU is 
implemented in rF (by r( U ) ) ,  T - I T+l + U-'T-. Thus, each equivalence class contains 
a symplectic with positive linear part. Let T be chosen so that T+ is positive; we now 
show that T- is then self-adjoint. From (9) 

TTT+ - T?T- = 1 ( 1 l a )  
T+TT - T-T! = 1 ( 1 l b )  

T:T--T?T+=o ( 1 l C )  

T+T! - T-T: = 0. (114 

If T+ = T f ,  subtract the first two lines: T- is normal. Multiply ( l l a ,  b) fore and aft by 
T-;subtract,toget[T:, T-]=O,so[T+, T-]=O. From ( l l c ,  d)weget  TJT--T!]= 
O,soT-=T! a s T + a l .  

We can write T- as the product of a positive linear self-adjoint operator p- and the 
conjugation C defined on (Ker T-)' by the closure of 

(12). 

CI commutes with p- := C1T- and with p+ := T+ (which is a function of p-,  by ( l l a ) ) .  
Let Cz be any conjugation on Ker T-. Then C = C1 0 C2 commutes with p*;  and 
T- = Cp-. It follows that p- = CT- = (T- ) . So, T = p+ + p- on Re 2 = { f :  Cf = f}, 
and T = p+-p-  on Im X= cf: Cf = -f}. Then, by (9), (p++p-)-'  = p+-p- ,  so T 
takes the standard form S 0 S-l: S = (p+ + p-)r Re X. 

It is known (Shale 1962, Berezin 1966) that T - 1 if and only if T- E B(X)S (the set 
of anti-linear Hilbert-Schmidt operators on X); the Hilbert-Schmidt norm for anti- 
linear operators (as well as for linear operators) h being defined by 

2 -1/2 C1= T-(T-) 

2 1/2 

where (fk} and {gi} are orthonormal bases. 
Let U(T) implement uT when T-1. The phase of U(T) is fixed by 

(R, U(T)SZ) > 0, where R is the Fock vacuum. Let 9 denote the Fock space over 2. It 
is known (Shale 1962) that: 

U (  T) + 1 strongly in 9 

if 

T+ -+ 1 strongly in. X 

T- + 0 in B ( 2 ) ;  

(15a) 

(15b) 

In (15a), T+ is not necessarily in standard form. We prove this and the converse, which 
seems to be new. 

Let K,(xl, . . . , x,) be the n-particle contribution to U(T)SZ. Then (Berezin 1966, 
theorem 4.1) 

K,+l(X, x i , .  * - , x,) 

and 

=-[n(n+1)]-1'2{A(~,x1)K,-1(x~, . . . , x , )+ *  + 



2482 L Polley, G Reents and R F Streater 

A(x, y )  being the kernel of the I?(%'); operator TY'T- (in Berezin's notation, A = 
a-%). In particular, the norm of the two-particle contribution is given by 

and the norm of the 2n -particle contribution can be estimated by 

so that the norm of the part of U(T)R orthogonal to R is less than 

[(I -IIAII~)-'- 1lIKZ I .  (19) 

Now, ljA112 = IIT;1T-1/2 6 llTil iillT-112 s llT-l\2+ 0 as IIT-112 + 0; also lKol s 1. Hence 
(19) + 0 and U(T) f l+  R as llT-/2+ 0. Now consider the total set { WF(g)fl: g E %'} c %. 
By definition of U (  T )  

Since T +  1 strongly in %' (equation (15)), WF(Tg)f WF(g) (see Araki and Woods 
1963). Hence, if (15) holds, WF(Tg)U(T)n+ WF(g)U(T)Rand U ( T ) +  1 strongly, as 
all operators are unitary and so are uniformly bounded in norm. This shows that 
(15)+(14). 

Conversely, (14) implies U(T)R+ R so that (17) + 0 and IIA112 = IIT;1T-112+ 0. By 
Berezin's identity (4.19) 

(T:T+)-l= 1 - (Ti lT-)(T;lT-)  

we see that 11T+11 s 1 + E  if ~ ~ T ~ l T - ~ ~  ( s  llTY1T-l12) is sufficiently small. Therefore, 
llT-112 s ~ ~ T + ~ ~ ~ ~ A ~ ~ 2 +  0 proving (15b). Finally, 

as V ( T ) +  1 strongly and according to Araki and Woods (1963), this implies 7 +  1, 
proving (15a). 

Another standard form of symplectic operators is determined by a bounded linear 
self-adjoint operator CY = ln(p++p-) .  This makes sense because p+= ( l+p- )  , so 
p+* p- > 0. Since C commutes with p+ and p- we have [CY, C] = 0. On Re E ,  
T = p+ + p- = exp CY = exp CYC ; on Im 2, T = p+ - p- = (p+ + B - ) - l =  exp( - C Y )  = 
exp CYC. Combining, ;we get 

S 

2 1/2  

T = exp(aC) 

T+ = cosh A = cosh a, A = CYC 

T- = sinh A = C sinh CY 

Thus, every T with T+>O is the exponential of a self-adjoint anti-linear operator. 
Conversely, an anti-linear self-adjoint operator A defines a symplectic of the standard 
form S 0 S-' via T = exp A.  
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Theorem 1. Let A,  B be bounded, anti-linear and self-adjoint. Then TA = exp A and 
T B  = exp B are equivalent if and only if IIA - B112 < W. 

Proof. To prove the ‘if’ part, write B = A  + h, llhlla < 0, and A = (exp(A + h )  exp(-A))-. 
Then we have to show that llAllz < CO, with 

A = sinh(A + h )  cosh A - cosh(A + h )  sinh A. (20) 

In the power series expansion of (20) all terms not containing a factor h cancel (since 
[cosh A,  sinh A]  = 0) and for the remaining terms the triangle inequality of B(2); 
together with IIAhBIJ2 S IlAll llh112 IIBII leads to 

For the ‘only if’ part, we need: 

Lemma. Any symplectic T is equivalent to some T,  with pure point spectrum. 

Proof of lemma. The Weyl-von Neumann theorem (see e.g. Kat0 1966) states that for 
each self-adjoint linear operator A in a complex Hilbert space, a Hilbert-Schmidt 
operator h can be constructed, such that A, = A  + h is self-adjoint with pure point 
spectrum. We intend to write T = exp(Ca), T,  = exp(Cu,) with a, = a + h and to apply 
the ‘if’ part of the theorem already proved, but we get into trouble if [h, C]#O. 
However, inspection of Section X, 02.1 of Kat0 (1966) shows that h can indeed be 
chosen so that it commutes with C. Namely, because of [a, C] = 0, the spectral 
projections of a are real operators i.e. [E,, C] = 0; now restrict lemma 2.2 of Kat0 
(1966) to real f €2, and the proof of theorem 2.1 to Re  2; finally, extend the 
constructed projections complex-linearly to all of 2. This proves the lemma. 

Proof of the ‘only if’ part of theorem 1 

Let exp A and exp B be equivalent symplectic operators. According to the lemma, 
A, = A  + ha, B, = B + hB, where A, and B, have a pure point spectrum, and exp A, is 
equivalent to exp A,  and exp B,-exp B. Then exp A,-exp B, too, so by Shale’s 
criterion, the anti-linear part of exp (A,) exp (-B,), namely 

sinh A, cosh B, = cosh A, sinh B, (22) 

must be a Hilbert-Schmidt operator. We show that IIAp- Bpl12 < CO from which 

Let CA and CB be the conjugations associated with A, and B, respectively obeying 
JIA - B112 < OO follows. 

(12). Let vi} be a real eigenbase for A,, { g k }  a real eigenbase for B,: 

We write the B(2);  norm of (22) using (13) with vi} on the left side, { g k }  on the right 
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side, and (10) for the anti-linear operators sinh A,, sinh B,. We get 

a > I I ( e x p ~ ,  exp(-B,))-II: 
= lcosh hi(fi, gk)Sinh pksinh hi(fi,gk) cosh / & I 2  

i,k 

= IIAP-BPII: 
This completes the proof of theorem. The ‘only if’ part of theorem 1 is also valid for 
unbounded symplectic operators, whereas the ‘if’ part is not. 

We now turn to the question of how convergence of symplectic operators T = exp A 
in the sense of (15) is transferred to A. 

Theorem 2. A sequence of symplectic operators Ti = exp Ai converges to T = exp A in 
the sense of 

(25) ( TiT1)+ + S 1 ; ll(TiT-1)-l12 + 0 

Proof. Suppose llAi -A112+0. Then, by (20) and (21), ~ ~ ( ~ T - l ) - ~ ~ ~ +  0. Also, 
(TiT1)+ = cosh A i  cosh A -sinh A i  sinh A converges to 1 even uniformly, since 
A i  + A  in norm. 

For the converse, we want to generalise (24) to 

Il(expA e x p ( - B ) ) - l ~ ~ ~ l l A  -B112’. (27) 

In the Weyl-von Neumann theorem, the Hilbert-Schmidt norms of the operators ha, 
hs, where A, = A +ha, B, = B + hs, can be made arbitrarily small (Kato 1966, X, 
0 2,1), by a suitable choice of A,, B,. We write: 

exp Aexp ( -B)  = {exp A exp (-A,)}{exp (A,) exp (-B,)}{exp B, exp (-B)}. 

As lIh&+O the linear part of the first factor { } converges to 1 in norm, and the 
anti-linear part goes to zero in B(X’);, by (21) (since / A , ~ ~ + I / A ~ ~ ,  the numbers /lApll 
needed in (21) remain bounded). Similarly for the last factor { }  as Ilhsl12+0. Hence 
I)(exp A exp (-B))-ll~ differs from S = Il(exp A, exp (-B,))-Ilz by a term going to zero 
with llh& Ilhsilz; by (24), S 211Ap-Bp112, which in turn converges to lIA-B112, This 
proves (27). The conclusion from (25) to (26) is now obvious. 

3. Construction of covariant representations 

Suppose now that X carries a unitary representation V, of a group G, leading to an 
automorphism group { T ~ :  g E G} of a(%). Let TT be a representation of %?I(%) of the 
form r T ( w ( f ) )  = ~~(w(7”)). The automorphisms {T,} are implemented in the 
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representation wT if there exists a unitary operator U, for each g E G, such that 

UgrT ( w(f 1) U,' = rT ( w( vgf 11, 
that is 

UgwF(Tf) U: = WF( TVgf 1. 
Hence, 7, is implemented in TT if and only if T - TV,. If T is in standard form (of § 2 )  
then TV, is not in general of standard form. But ViTV, is of standard form, and 
V i  TV, - TV,. 

Let T = exp A where A = Ca as in 0 2. Then VZTV, = exp( V:AV,). Write 

A,=A-v;Av,. (28) 
The map g-A, obeys the 'cocycle equation' V:AhV, =Ahg -Ae 
By theorem 1, if T = exp A,  T' = exp A', then T - T' if and only if A -A '  = h E 

B ( X ) ; .  The corresponding cocycles then differ by h - V:hV,, a 'coboundary' i.e. of the 
form (28) with A = h  E B ( X ) ; .  Let Z'(G, B ( X ) ; )  denote the set of anti-linear 
self-adjoint Hilbert-Schmidt cocycles A, of the form (28), and B'(G, B ( X ) ; )  the 
corresponding coboundaries. 

Theorem 3. Consider an irreducible representation of a simply connected symmetry 
group G on the l-particle space X such that at least one of the generators (e.g. the 
energy H) is positive. Then there is a one-to-one correspondence between G- 
covariant quasi-free representations of the CCR of the form rT, and elements of the 
anti-linear B(X);-valued cohomology group H'(G, B ( X ) ; )  = Z1(G, B(X); ) /B ' (G,  
B(%);). The projective representation of G in rT is continuous if and only if the 
corresponding cocycle is (equivalent to one that is) continuous in B ( X ) ; .  

Proof. It is proved in the remarks above that a G-covariant representation rT, 
T = e x p A ,  defines an element of H1(G,  B ( X ) ; ) .  Now let A,=A-V:AV, and 
B, = B - VZBV, EZ ' (G,  B ( X ) S )  such that A, -B, = h - VihV, EB'(G, B(X)S) .  
Then A - B  - h = F is self-adjoint, anti-linear and commutes with V, for all g E G. 
Note that Schur's Lemma does not hold in general for anti-linear operators, but F 2  is 
linear (and positive), obeys [F', V,] = 0 and thus F 2  = A 1, A 3 0. Assume A # 0; then 
C =FA is a conjugation and [C, V,] = 0. Let Vg([) = exp(iHt) with H 3 0 and f E DH, 
Hf # 0. From 

iHf = lim t-'( Vg(t) - l)f 
t-0 

we conclude HCf = -CHf, thus Cf E DH and (Cf, HCf) = -(f, Hf) < 0 which contradicts 
the positivity of H. Hence A = 0, i.e. A - B = h so that the representations rT, and rTB 
are equivalent. 

For the continuity, suppose U, implements T, in TT. Then 

Ug wF( Tf) U: = wF( TVgf) 

U,WF( f )  U: = WF(TVgT-'f). 

(29) 
so 

(30)  
Thus, U, implements the automorphism generated by the symplectic operator TV,T-', 
in TF. By Shale's theorem 4.2 and its converse proved in § 2, U, is continuous at g = idG 



2486 L Polley, G Reents and R F Streater 

(and hence defines a continuous projective representation everywhere) iff for g + idG, 
TV,T-'+ 1 in the sense of (15); thus (VZTV,)T-'+ 1 in that sense. Write T = 
exp Ca = exp A.  Then V:TV, = exp( VgAV,) and by theorem 2 ,  VZTV, + T in the 
sense of (15) if and only if 

I/ VZA V,  -All2 + 0 for g + idG. (31) 

Thus, U, is continuous at idG if and only if A ,  is a continuous cocycle at idG and hence 
everywhere. This proves the theorem. It is obvious that if A,  is a continuous cocycle, 
then so is ( A  + h ) ,  with h E E?(%?)& 

To get some new examples of @'-covariant representations of the free boson field 
in 1 + 1 dimensions, we construct non-trivial elements of H'(@!, B ( X ) ; )  asfollows. We 
take %? = L2(R, dpllpl) which carries the usual representation V of zero mass with 
one-particle Hamiltonian h. We choose C to be the complex conjugation in this 
momentum space. This has the adyrantage that C commutes with Lorentz trans- 
formations (but not with space-time translations). 

In Kraus and Streater (1981) functions { f i }  were constructed with the following 
properties: f i ( p )  real, and: 

The supports of f i  are mutually disjoint 

c 0% hh) < 00, Ilfill= 1, j = 1,2,  . . . 
i 

where A parametrises the Lorentz transformation A and is zero for A = 1. The existence 
of a non-trivial cocycle of H1(P ,  B(X)S)  can be proved as in Kraus and Streater (1981). 
Thus: T = exp(aC) with C as above and 

a Ifi)aj(fil=c I f j k ) a i k ( f j k i  
i 

where ( f i k }  extends vi} to a complete real orthonormal system with disjoint supports for 
different j ,  and fjo = f i ,  ajk = 0 if k # 0 ,  ai0 = ai. Clearly ~ T T  is non-Fock if 

since [ V , ,  C] = 0 and Cfik = h k .  

term of the sum to be non-zero, k = 0 or k' = 0. Thus 
In the last term, VA can be replaced by 1 - VA since ( f j k ,  f i ' k ' )  = 8jj'akk'. Also, for a 

(37) (36) /(ajO-ai'k')(fiO, (1 - VA)fi'k')12f 1 I(ajk - a ] ' O ) ( f i k ' ( l  - VA)fj'O)/* 
j f k '  ij' k 
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If sup Iail = s <CO, then 
J 

Thus, (31) is satisfied for Lorentz transformations, which are therefore continuously 
implemented in TT. 

For space-time translations we can write X = O&,, where Xi = L2(Mj, dp/Ipl), with 
all disjoint, R = and supp fi E Mi. Then 9 is the infinite tensor product On$(&) 
where SZ is the fiducial vector On, Rj being the Fock vacuum of S ( X j ) ? .  We may 
assume that C f j k } k = O , l , . . .  form an orthonormal basis in Xi. Then the state WT = W F  0 T is 
an infinite product state Oini 0 q, where T, is TYXj. q alters just one mode in Xi, 
namely, the mode fjo. Hence S Z j  0 7 is a Fdck state in 9 ( X j ) .  A calculation of the total 
energy in the state OjSZi 0 q gives Z j  sinh2aj(fi, hfi) which is finite by (33) and (33). We 
can therefore apply the theorem of Kraus et a1 (1976b) to conclude that the infinite 
product of space-time translation operators on 9 = OSZ 0 TSi defines a continuous 
unitary representation of Rz obeying the spectral condition. By theorem 3, {Ag: g E R2} 
is a continuous cocycle, and defines a covariant representation of the CCR with positive 
energy. 

A construction similar to that in Kraus and Streater (1981) would construct models 
in 1 + 3 dimensions with positive energy, and covariant under boosts in one direction 
and rotations about this direction. Representations covariant under R4 x SO(3) can also 
easily be given. Such representations have already been noted (Kraus et a1 1977a). 

Considerations similar in spirit have been discussed by Carey and Hurst (1979) and 
Ekhaguere (1978). Basarab-Horwath and Polley (1981) have proved that H1(B, 
I?(%');) is trivial in (3 + 1) dimensions, and also in (2 + 1) dimensions. 

It is likely that H'(B,  B ( X ) 5 )  is trivial in 1 + s  dimensions, for all s > 1. The method 
used here to construct cocycles will not work, as it entails the construction of functions 
Vi} such that Z(fi - V,&) is a vector-valued cocycle. Such a construction leads only to 
coboundaries in 1 + s  dimensions, since H'(B,  X, V) is trivial in that case (Basarab- 
Horwath et a1 1979, theorem 4). 
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